工学系研究科専攻間横断型教育プログラム 「機械システム・イノベーション」 最先端融合科学イノベーション 教育研究コンソーシアム

第233回GMSI公開セミナー/第57回CIAiSセミナー

Thermal Transport in Large Unit Cell Crystals

Professor Alan McGaughey

Department of Mechanical Engineering, Carnegie Mellon University

日時: 2017年6月23日(金)15:00~16:00

場 所: 東京大学工学部 2号館 3F 31A 会議室

Abstract:

In this seminar, I will describe how atomistic simulations and calculations can be used to predict and interpret the thermal transport properties of crystalline C_{60} , superatomic crystals, and metal organic frameworks. Thermal energy transport is dominated by atomic vibrations in these crystalline materials, which have unit cells that contain tens or hundreds of atoms. As a result of the large unit cells, transport physics emerge that are not present in small unit cell crystals such as silicon.

Molecular dynamics simulations are performed on the C_{60} crystal with (i) all degrees of freedom active, (ii) rigid cages that can translate and rotate, and (iii) a reduced-order point-mass model. The results allow for resolution of the effects of different types of degrees of freedom (intramolecular vibrations, intermolecular vibrations, and rotations) on thermal transport

The superatomic crystals considered are periodic, three-dimensional arrays of C_{60} and Co_6X_8 (P $Et_3)_6$ (X=S, Se, Te) molecules. The electronic structure of these low-cost organic-inorganic hybrid materials can be carefully tuned, making them attractive alternatives to traditional semiconductors in thermoelectric, photovoltaic, and electronic applications. Small changes in the constituent molecules are found to have a pronounced effect on thermal conductivity. Regimes typical of crystalline and amorphous materials are observed and interpreted based on the rotational order/disorder of the C_{60} molecules.

MOFs are organic-inorganic hybrid material that contains Angstrom-sized pores and channels. They have application in gas storage, gas separation, and catalysis. By performing molecular dynamics simulations, the effects of pore size, shape, and filling gases on MOF thermal conductivity are predicted. The coupled mass and heat transfer across a MOF-gas interface is analyzed.

主催: 東京大学大学院工学系研究科「機械システム・イノベーション」プログラム(GMSI)

「最先端融合科学イノベーション教育研究コンソーシアム」(CIAiS)本件連絡先:東京大学大学院工学系研究科機械工学専攻 准教授 塩見 淳一郎

GMSIプログラム事務局 E-mail: office@gmsi.t.u-tokyo.ac.jp Phone: 03-5841-0696